GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW)
FURTHER MATHEMATICS
UNIT 3 FURTHER MECHANICS A 2305U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Further Mathematics - AS Unit 3 Further Mechanics A

SUMMER 2018 MARK SCHEME

Q Solution

1(a) $\mathrm{e}=0.75$
1(b)

Conservation of momentum
$18 \times 4+7 \times(-3)=18 v_{A}+7 v_{B}$
Restitution
$v_{B}-v_{A}=-\frac{5}{7}(-3-4)$
$18 v_{A}+7 v_{B}=51$
$-7 v_{A}+7 v_{B}=35$
$25 v_{A}=16$
$v_{A}=0.64$
$v_{B}=5.64$

1(c) $\quad I=7[5.64-(-3)]$
$I=60.48 \mathrm{Ns}$

1(d) Energy loss =
$0.5\left(18 \times 4^{2}+7 \times 3^{2}\right)-0.5\left(18 \times 0.64^{2}+7 \times 5.64^{2}\right)$
$=60.48$ (J$)$
1(e) After collision A moves towards the wall.

Q
2 Resistance $R=k v^{2}$
Tractive force $T=\frac{P}{v}$
N2L up slope
$\frac{P}{14}-14^{2} k-750 g \times \frac{1}{10}=0$

N2L down slope
$\frac{P}{28}-28^{2} k+750 g \times \frac{1}{10}=0$
$\frac{4 P}{14}-4 \times 75 g=4 \times 14^{2} k$
$\frac{P}{28}+75 g=4 \times 14^{2} k$
$\frac{7 P}{28}=5 \times 75 g$
$P=14700$
$\frac{14700}{14}-75 \times 9 \cdot 8=14^{2} k$
$k=\frac{45}{28}$
Resistance R when $v=10.5=\frac{45}{28} \times 10.5^{2}$
$R=177(.1875)(\mathrm{N})$

Mark Notes

B1 si

M1 used

M1 dim correct equation

A1 correct equation,
allow $750 a$ RHS
M1 dim correct equation

A1 correct equation
m1 one variable eliminated

A1 cao P or k
m1

A1 cao

3(a) Let x be the extension in the string when P is instantaneously at rest for the $1^{\text {st }}$ time.

Loss in PE $=m g h$

$$
=30 \times 9.8(0.9+x)
$$

Gain in $E E=\frac{1}{2} \times \lambda \frac{x^{2}}{l}$

$$
=\frac{1}{2} \times 490 \frac{x^{2}}{1.5}
$$

Conservation of energy
$\frac{1}{2} \times 490 \frac{x^{2}}{1.5}=30 \times 9.8(0.9+x)$
$x^{2}-1.8 x-1.62=0$
$x=\frac{1 \cdot 8 \pm \sqrt{1 \cdot 8^{2}+4 \times 1 \cdot 62}}{2}$
$x=2.4588$
$A P=3.96(\mathrm{~m})$

3(b) When P is instantaneously at rest for the
2nd time $A P=0.6(\mathrm{~m})$
External resistance to motion have been assumed to be negligible.

Mark Notes

M1 attempted, h a distance.
A1

M1 attempted

Q
Solution
4(a) $\quad \mathbf{v}=\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{x}$
$\mathbf{v}=3 \cos t \mathbf{i}+8 \sin 2 t \mathbf{j}+5 \cos t \mathbf{k}$
For $\mathbf{v}=0, \cos t=0$
$t=\pi / 2,(3 \pi / 2, \ldots \ldots)$
and $\sin 2 t=0$
$2 t=0, \pi,(2 \pi, \ldots \ldots)$
$t=0, \pi / 2,(\pi, \ldots .$.
Hence smallest value of t when $\mathbf{v}=0$ is $\pi / 2$. A1

4(b) Mom. vector $=$
$3(3 \cos t \mathbf{i}+8 \sin 2 t \mathbf{j}+5 \cos t \mathbf{k})$

4(c) $\mathbf{F}=m \mathbf{a}$
$\mathbf{a}=-3 \sin t \mathbf{i}+16 \cos 2 t \mathbf{j}-5 \sin t \mathbf{k}$
$\mathbf{F}=3(-3 \sin t \mathbf{i}+16 \cos 2 t \mathbf{j}-5 \sin t \mathbf{k})$
$\mathbf{F}=-9 \sin t \mathbf{i}+48 \cos 2 t \mathbf{j}-15 \sin t \mathbf{k}$

A1
cao

B1 ft \mathbf{v} isw

Mark Notes

M1 used

A1 all correct
M1 equating either component to 0
equating other component to 0

M1 used
M1 $\quad \mathbf{v}$ differentiated
A1 ft v
isw

Q

5(a)(i)

Conservation of energy
$0.5 m u^{2}=0.5 m v^{2}-m g l\left(\cos \theta-\cos 60^{\circ}\right)$
$v^{2}=u^{2}+2 l g \cos \theta-l g$

N2L towards centre
$T-m g \cos \theta=\frac{m v^{2}}{l}$
$T=m g \cos \theta+\frac{m\left(u^{2}+2 \lg \cos \theta-l \mathrm{~g}\right)}{l}$
$T=\frac{m u^{2}}{l}+3 m g \cos \theta-m g$

5(a)(ii) For complete circles, when $\theta=180, T>0$
$\frac{m u^{2}}{l}>4 m g$
$u^{2}>4 l g$
A1

Q Solution
Mark Notes

5(b) Circular motion ceases when $T=0, u^{2}=3 l g$ M1
$T=3 m g+3 m g \cos \theta-m g=0$
$\cos \theta=-\frac{2}{3}, \theta=131.81^{\circ}$
A1 cao

When circular motion ceases, the particle P
is subject to gravity and behaves as a
projectile (with initial velocity upwards and
tangential to the circular path).

5(c) For complete circles, when $\theta=180, v^{2}>0 \quad$ M1
$u^{2}-2 \lg -\lg >0$
$u^{2}>3 l g$
A1

Q
Solution
6

6(a) Resolve vertically
$R \cos 60^{\circ}=1200 g$
$R=2400 g=23520(\mathrm{~N})$

6(b)(i) N2L towards centre
$R \sin 60^{\circ}=1200 a$
$R \sin 60^{\circ}=1200 \times \frac{v^{2}}{r}$
$23520 \times \frac{\sqrt{3}}{2}=1200 \times \frac{40^{2}}{r}$
$r=94.26(\mathrm{~m})$
6(b)(ii) $\omega=\frac{v}{r}=0.424 \mathrm{rad} \mathrm{s}^{-1}$

B1 units

6(c) The assumption was made that there are no external forces acting on the vehicle. If there is an external force with component acting horizontally towards the centre of motion, then the LHS of the equation in (b)(i) would be larger resulting in a smaller radius r. Similarly, if the component of force is acting away from the centre, the radius would be larger.

